Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tenaillon, Maud (Ed.)Abstract Genome size is an important correlate of many biological features including body size, metabolic rate, and developmental rate, and can vary due to a variety of mechanisms, including incorporation of repetitive elements, duplication events, or reduction due to selective constraints. Our ability to understand the causes of genome size variation are hampered by limited sampling of many non-model taxa, including monogonont rotifers. Here we used high throughput Nanopore sequencing and flow cytometry to estimate genome sizes of nine species of monogonont rotifers representing seven families, including three representatives of Superorder Gnesiotrocha. We annotated the genomes and classified the repetitive elements. We also compared genome size with two biological features: body size and metabolic rate. Body sizes were obtained from the literature and our estimates. Oxygen consumption was used as a proxy for metabolic rate and was determined using a respirometer. We obtained similar genome size estimates from genome assemblies and flow cytometry, which were positively correlated with body size and size-specific respiration rate. Importantly, we determined that genome size variation is not due to increased numbers of repetitive elements or large regions of duplication. Instead, we observed higher numbers of predicted proteins as genome size increased, but currently many have no known function. Our results substantially expand the taxonomic scope of available genomes for Rotifera and provide opportunities for addressing genetic mechanisms underlying evolutionary and ecological processes in the phylum.more » « lessFree, publicly-accessible full text available March 6, 2026
-
Afrotropical inland waters are highly diverse ecosystems; however, they remain poorly studied, especially for rotifers. Here, we contributed to the knowledge of the rotifer species richness in the largely understudied African countries of Angola and Ghana. We assessed the roles of habitat type and a suite of abiotic environmental factors in determining rotifer species richness of Ghana. A total of 37 sites (Ghana 32, Angola 5) in 19 water bodies from a variety of aquatic habitat types were sampled. In Ghana, we identified 118 taxa (105 species or subspecies level, 13 identified to genus). We identified 15 taxa (13 species) in the Angola samples. For Ghana, 100 of 118 (~85%) taxa were new records for the country, of which 13 species (~11%) were also new records for Africa. Nearly all the species (~93%) were new records for Angola. Species richness was positively correlated with conductivity and reservoir habitat type and negatively with pH. Redundancy analysis (RDA), conducted at the species level for the Ghana dataset, indicated suites of species associated with latitude, longitude, temperature, TDS, or pH. We also evaluated the effect of climate on species distribution in 27 African countries by conducting a review of all reports from Africa to determine factors associated with species richness. A Spearman’s correlation confirmed a significant positive correlation between the number of rotifer species and the number of climatic regions (R = 0.53, p < 0.001) for certain countries, based on species distributions in relation to Köppen–Geiger climate regions. This fact validates the environmental heterogeneity hypothesis for African rotifers. Lastly, we predicted that rotifer species richness in Ghana, as a country with a tropical climate, could approach ~190 taxa, while in climatically heterogeneous Angola we predict ~200 taxa. This study contributes to our knowledge of rotifer biogeography and species richness patterns in Africa.more » « less
-
Abstract The rotifer fauna of Africa has been studied for >100 years, but there has been no recent synthesis. We compiled data from 265 publications that reported information on African rotifers. Our dataset yielded information on the distribution of 765 taxa from ~1850 separate sites; these included both natural and artificial habitats such as lakes, ponds, puddles, oases, artificial systems, rivers and wetlands. A heat map of predicted rotifer biodiversity indicated that the greatest diversity should be present in the sub-Saharan region including a large hotspot in Mali and several smaller ones scattered in that region. Lakes Kariba, Tanganyika and Malawi showed high-predicted diversity, but surprisingly, Lake Victoria had lower diversity than expected. Two regions showed unusually high-predicted diversity: northwestern Algeria extending into Morocco and Egypt. Equatorial Africa is rich in habitats well suited for rotifers, yet their predicted biodiversity seems low. Latitude and elevation were negatively correlated with richness, while permanent water source and littoral zone were positively correlated according to generalized linear modeling results. Partial RDA analyses showed significant correlations among several environmental features and species occurrences. It is clear that more survey work remains to be done to achieve a better understanding of African rotifers.more » « less
An official website of the United States government
